ANNEX I

Planning and Environmental Policy Group

Part III of the Environment (Northern Ireland)
Order 2002

Local Air Quality Management Guidance
Worked Examples for the Practice Guidance
December 2009

YEAR Discount Factor 0 0.9662 1 0.9335 2 0.9019 3 0.8714 4 5 0.8420 0.8135 6 0.7860 7 0.7594 8 0.7337 9 10 0.7089 0.6849 11 0.6618 12 0.6394 13 14 0.6178 0.5969 15 0.5767 16 0.5572 17 0.5384 18 19 0.5202 0.5026 20 0.4856 21 0.4692 22 23 0.4533 0.4380 24 25 0.4231 26 0.4088 27 0.3950 28 0.3817 29 0.3687 30 0.3563

for Government recommended 3.5% discount rate

Example of the use of discounting

This shows how the present value of £1,000 declines in future years with a discount rate of 3.5 per cent.

The value of £1000 in each year is multiplied by the discount factor

Year	0	1	2	3	4	5
Value	£1,000	£1,000	£1,000	£1,000	£1,000	£1,000
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.842
Discounted Present Value	£1,000	£966	£934	£902	£871	£842

from HMT scheme (left)

Source: Green Book, Annex 6, Page 100. http://www.hm-treasury.gov.uk/media/F/D/Green_Book2_03.pdf In this example, the costs of the scheme are expressed as a present value See Box 6 of economic guidance document

Note that it is assumed that the base year is year 0, so the discount factor for year 0 is 1

Scheme A	0	1	2	3	4	5
Capital costs	£50,000					
Operating costs	£1,000	£1,000	£1,000	£1,000	£1,000	£1,000
Costs	£51,000	£1,000	£1,000	£1,000	£1,000	£1,000
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.842
Present value	£51,000	£966	£934	£902	£871	£842
Sum of PV	£55,515					

from HMT scheme (previous worksheet)

The value in each year is multiplied by the discount factor The sum of these present values give the present value

Scheme B	0	1	2	3	4	5
Capital costs	£10,000					
Operating costs	£10,000	£10,000	£10,000	£10,000	£10,000	£10,000
Costs	£20,000	£10,000	£10,000	£10,000	£10,000	£10,000
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.842
Present value	£20,000	£9,662	£9,335	£9,019	£8,714	£8,420
Sum of PV	£65,150					

from HMT scheme (previous worksheet)

The value in each year is multiplied by the discount factor The sum of these present values give the present value In this example, the equivalent annual cost of the schemes are estimated See Box 7 of economic guidance document

The net present value (previous sheet) can be used to derive an equivalent annualised cost (EAC)

The formula to do this is Equivalent annualised Cost =

 $\left[\frac{r(1+r)^n}{(1+r)^n-1}\right].$

where r is the discount rate (3.5% in the UK, i.e. 0.035) and n is the scheme length in years

However, there is an excel function that can be used to generate this value

 take a NPV of £10000 and ten year

 NPV
 £10,000

 Discount rate, r
 3.50%

 Number of year, n
 10

 Fomula
 £1,202

 Excel
 £1,202

There is an excel formula to do this (see cell). Note strictly speaking, this formula (and formula above) provides an EAC for a scheme starting in year 1

This can be applied to the example scheme

Scheme A	0	1	2	3	4	5	7
Capital costs	£50,000						7
Operating costs	£1,000	£1,000	£1,000	£1,000	£1,000	£1,000	7
Costs	£51,000	£1,000	£1,000	£1,000	£1,000	£1,000	1
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.842	f
Present value	£51,000	£966	£934	£902	£871	£842	7
Sum of PV	£55,515						٦
D: 4 4	0.500/		*		•		_

from HMT scheme (previous worksheet)

The value in each year is multiplied by the discount factor

The sum of these present values give the present value

Discount rate 3.50% Number of years 6

EAC (formula) £10,418

EAC (excel) £10,418

The EAC formula is applied to the sum of PV to generate the equivalent annual cost (annualised costs) It requires the discount rate - 3.5% - and the number of years to annualise over - in this case 6

Scheme B	0	1	2	3	4	5
Capital costs	£10,000					
Operating costs	£10,000	£10,000	£10,000	£10,000	£10,000	£10,000
Costs	£20,000	£10,000	£10,000	£10,000	£10,000	£10,000
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.842
Present value	£20,000	£9,662	£9,335	£9,019	£8,714	£8,420
Sum of PV	£65,150					
Discount rate	3 50%					

from HMT scheme (previous worksheet)

 Sum of PV
 £65,150

 Discount rate
 3.50%

 Number of years
 6

 EAC (formula)
 £12,227

 EAC (excel)
 £12,227

In this case example A has a lower equivalent annualised cost of 10418 compared to 12227

In this example, the cost-effectiveness of the schemes are compared See Box 7 of economic guidance document

The cost-effectiveness calculation combines the EAC (annualised) costs with the annual emission reduction

Option A reduces emissions by 10 tonnes of NOx a year in the area.

Option B reduces emissions by 14 tonnes of NOx a year in the area

The cost-effectiveness is then the annual emission reduction divided by the equivalent annual cost EAC was given on previous work sheet

	EAC	Tonnes abated/year		Costs per tonne abated
Option A	10418		10	1042
Option B	12227		14	873

So option B is the more cost-effective option, as it achieves a reduction in NOx for lower cost per tonne

Note that to consider other environmental objectives, the 'net' cost-effectiveness should be estimated

SPC In this example, the economic benefits of GHG reductions are estimated See Box 4 of economic guidance document

Guidance available at

http://www.defra.gov.uk/environment/climatechange/research/carboncost/step1.htm.

Year	2007	2008	2009	2010	2011	2012
CO ₂ reduction (tonnes)	100	80	60	40	20	0

Year	2007	2008	2009	2010	2011	2012
SPC in 2007 prices (w2%)	25.5	26	26.5	27	27.6	28.1
Total Values	2550	2080	1590	1080	552	0
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.842
Discounted value	2550	2010	1484	974	481	0
Net Present Value	7499					

Multiply CO2 reduction by SPC value

from HMT scheme (previous worksheet)

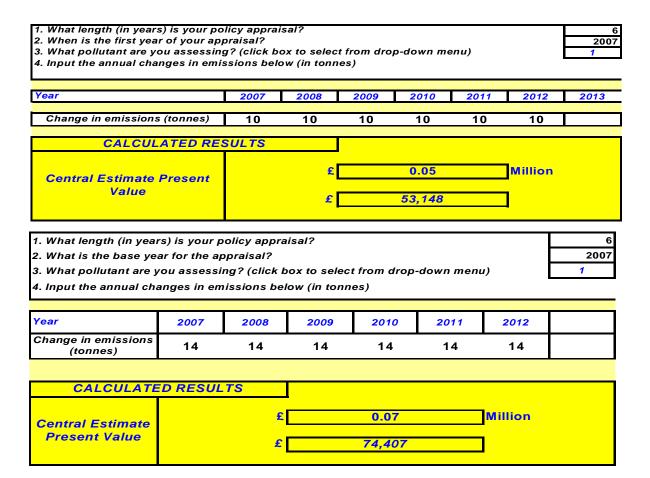
The value in each year is multiplied by the discount factor

The sum of these present values give the net present value

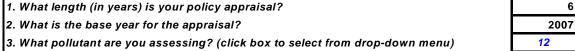
In this example, the economic benefits of NOx reductions are estimated See Box 9 of economic guidance document

The benefits of air pollution reductions can be valued in economic terms

These benefits can be obtained using 'damage costs', which provide the benefits of marginal air quality improvements, in benefits (£) per tonne of pollutant reduced.


These damage costs are presented on the Defra web-site

http://www.defra.gov.uk/environment/airquality/panels/igcb/guidance/index.htm


To estimate benefits, it is necessary to select the pollutant, and specify the year that the scheme starts and the length of time

Option B Nox Present Value benefits (\mathfrak{L}) Option B 14 74407

These calculations can be undertaken with the damage cost calculator, as below

Option A	Tonnes abated/year	PM10 0.1	Present Value benefits (£) 65,602	NOX + PM10 118,750
Option B		0.05	32801	107,208
	ength (in years) is your		sal?	6 2007

4. Input the annual changes in emissions below (in tonnes)

Year	2007	2008	2009	2010	2011	2012	
Change in emissions (tonnes)	0.1	0.1	0.1	0.1	0.1	0.1	

CALCULATE	D RESULTS		
Central Estimate	£	0.07	Million
Present Value	£	65,602	

- 1. What length (in years) is your policy appraisal?
- 2. What is the base year for the appraisal?
- 3. What pollutant are you assessing? (click box to select from drop-down menu)
- 4. Input the annual changes in emissions below (in tonnes)

Year	2007	2008	2009	2010	2011	2012	
Change in emissions (tonnes)	0.05	0.05	0.05	0.05	0.05	0.05	

2007

CALCULATE	D RESULTS		
Central Estimate Present Value	£	0.03	Million
	£	32,801	

In this example, the cost benefit analysis is undertaken See Box 9 of economic guidance document

First if only NOx is included

Option A	Present Value costs (£) 55515	Present Value benefits (£) 53148	Net Present Value -2367	This scheme has a negative net present value
Option B	65150	74407	9257	This scheme has a positive net present value
	see earlier sheet	see earlier sheet	benefits - costs	
Then in NOV and DMAO				
Then in NOX and PM10 a	are included			
Option A	Present Value costs (£) 55515	Present Value benefits (£) 118750	Net Present Value 63235	This scheme now has a positive net present value
Option B	65150	107208	42058	and it is now greater than scheme B
	see earlier sheet	see earlier sheet	benefits - costs	

In this example, a 'net' cost-effectiveness analysis is undertaken See Box 10 of economic guidance document

The estimation of the net cost-effectiveness analysis nets benefits from the pure cost aspects to give the cost-effectiveness ranking

Option A reduces emissions by 10 tonnes of NOx a year in the area.

Option B reduces emissions by 14 tonnes of NOx a year in the area

The cost-effectiveness is then the annual emission reduction divided by the equivalent annual cost for costs, the EAC was given on previous work sheet

For benefits, the total benefits (NOX and PM) have to be annualised

	Α	В
Sum of PV	£118,750	£107,208
Discount rate	3.50%	3.50%
Number of years	6	6
EAC (formula)	£22,286	£20,120
EAC (excel)	£22,286	£20,120

			NOX		
	EAC	EAB Net	Tonnes abated/yea	r Costs per tonne a	abated
Option A	10418	£22,286 -£1	11,867	10 -1187	option A now is more cost-effective when the other environmental aspects are taken into account
Option B	12227	£20,120 -£	£7,893	14 -564	·

Cost-Effectiveness

Example on Retrofit technology

This is for a DPF, using the costs from the IGCB economic analysis

Base year 2008

Scheme start 2008 Note in this example, the base year is the same as the start year, so the discount factor is 1 for year 0

Discount rate 3.50% Number of years 5

	2008	2009	2010	2011	2012
Equipment - bus	Year 0	Year 1	Year 2	Year 3	Year 4
DPF capital (resource)	1,750				
DPF maintenance	240	240	240	240	240
DPF fuel	0	0	0	0	0
Total	1,990	240	240	240	240
Discount factor	1.00000	0.96620	0.93350	0.90190	0.87140
Discounted cost	1,990	232	224	216	209
Present value	2,872				
Equivalent annualised cost	£636				

from HMT scheme (previous worksheet)

The value in each year is multiplied by the discount factor The sum of these present values give the present value Use equation or the simple excel formula (PMT)

Annual emission benefits

PM10	emissions	emission per	benefit at 90%	cost
	g/km	year tonnes	abatement	per tonne
Euro II	0.194	0.00387	0.0035	£182,409
Euro III	0.139	0.00279	0.0025	£253,346
Euro IV	0.029	0.00058	0.0005	£1,216,062
Euro IV+ (2008)	0.029	0.00058	0.0005	£1,216,062

source NAEI Assume

20 000 km

peryear in area

Cost-benefit analysis

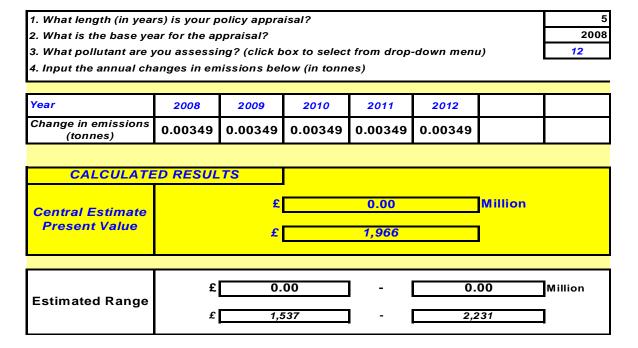
The benefits for a Euro II bus are based on a five year lifetime

benefit at 90% abatement

Euro II

0.0035 in the central zone

This value is entered into the Defra damage cost calculator


http://www.defra.gov.uk/environment/airquality/panels/igcb/guidance/index.htm

The length of the scheme and the base year need to be entered In this case, we are using a 2008 base year and a 5 year scheme

To estimate benefits, it is necessary to select the pollutant, and specify the year that the scheme starts and the length of time

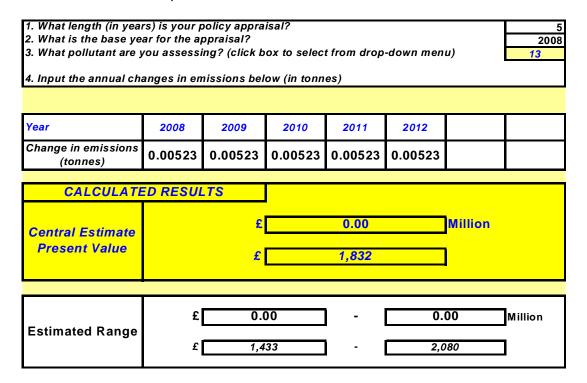
A 5 year lifetime

The central zone corresponds with area location 12 - inner conurbation

This gives the benefits, however, the total benefits are relevant for the Cba, so it is also necessary to add the benefits outside the zone We assume the vehicle also does 30 000 km outside the zone each year

Annual emission benefits

PM10 emissions emission per benefit at 90% g/km year tonnes abatement


Euro II 0.194 0.00581 0.00523

source NAEI Assume 30 000 km peryear in area

This value is also entered into the damage cost spreadsheet.

However, for PM, the location of emissions is important, and so a new page must be used

The outer zone corresponds with area location 13 - outer conurbation

The main page then shows the total benefits, i.e. the two sets of benefits are added together

IGCB Damage Cost Calculator - Total Appraisal Results Central Estimate: This is the most likely estimate of damage costs based on the probability distribution used for Monte-Carlo analysis of air quality impacts Estimated Results: This is the main central results of the calculator using the range of damage cost values as agreed by the IGCB. Sensitivity Damage Cost Range: These are the sensitivity low and high values of the central damage 0.0 Million **Central Estimate Present Value** 3.798 0.0 0.0 Million **Estimated Range** 2,970 4,311

This is compared against the NPV of costs

	NPV		
Equipment - bus	Benefits	NPV Costs	Net NPV
DPF	3,798	2,872	926

To estimate the net cost-effectiveness analysis, the benefits need to be expressed as an equivalent annual cost.

	Α
Sum of PV	£3,798
Discount rate	3.50%
Number of years	5
EAC (formula)	£841
EAC (excel)	£841

Tonnes abated

0.00349

in central area

Annualised Costs

In this example, we are estimating the costs of alternative schemes

	Base	Scheme A	Scheme B	Scheme C
	scheme	Bus	Heavy	All
Start-up (capital)				
Equipment	150,000	250,000	250,000	350,000
Central system	50,000	100,000	150,000	200,000
Other	70,000	100,000	200,000	250,000
Total	270,000	450,000	600,000	800,000
Operating costs (end of year 1)				
Maintainance	10,000	20,000	20,000	30,000
Central system, premises and supplies	65,000	75,000	80,000	150,000
Staff costs	120,000	170,000	230,000	330,000
Total	195,000	265,000	330,000	510,000

BASE

Base year 2007 This is year 0

Scheme start year 2008 This is year 1. This is important in picking the correct discount factor note below that this starts with year 1 discount factor

Discount rate 3.50%

Number of years 8

	2008	2009	2010	2011	2012	2013	2014	2015	
Base	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	
Capital costs	270,000								
Ongoing costs	195,000	195,000	195,000	195,000	195,000	195,000	195,000	195,000	
Total	465,000	195,000	195,000	195,000	195,000	195,000	195,000	195,000	
Discount factor	0.96620	0.93350	0.90190	0.87140	0.84200	0.81350	0.78600	0.75940	
Discounted cost	449,283	182,033	175,871	169,923	164,190	158,633	153,270	148,083	
Net present value	1,601,285								
Equivalent annualised cost	£232,949								

Scheme A

Discount rate 3.50% Number of years 8

Α	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Capital costs	450,000							
Ongoing costs	265,000	265,000	265,000	265,000	265,000	265,000	265,000	265,000
Total	715,000	265,000	265,000	265,000	265,000	265,000	265,000	265,000
Discount factor	0.96620	0.93350	0.90190	0.87140	0.84200	0.81350	0.78600	0.75940
Discounted cost	690,833	247,378	239,004	230,921	223,130	215,578	208,290	201,241
Present value	2,256,374							
Equivalent annualised cost	£328,250							

Scheme B

Discount rate 3.50% Number of years 8

В	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Capital costs	600,000							
Ongoing costs	330,000	330,000	330,000	330,000	330,000	330,000	330,000	330,000
Total	930,000	330,000	330,000	330,000	330,000	330,000	330,000	330,000
Discount factor	0.96620	0.93350	0.90190	0.87140	0.84200	0.81350	0.78600	0.75940
Discounted cost	898,566	308,055	297,627	287,562	277,860	268,455	259,380	250,602
Present value	2,848,107							
Equivalent annualised cost	£414,333							

Scheme c

Discount rate 3.50% Number of years 8

Capital costs	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8
Capital costs	800,000							
Ongoing costs	510,000	510,000	510,000	510,000	510,000	510,000	510,000	510,000
Total	1,310,000	510,000	510,000	510,000	510,000	510,000	510,000	510,000
Discount factor	0.96620	0.93350	0.90190	0.87140	0.84200	0.81350	0.78600	0.75940
Discounted cost	1,265,722	476,085	459,969	444,414	429,420	414,885	400,860	387,294
Present value	4,278,649							
Equivalent annualised cost	£622,444							

Thee summary of present value and equivalent annual cost values are shown below

	Base	Α	В	С
PV	1,601,285	2,256,374	2,848,107	4,278,649
EAC	232,949	328,250	414,333	622,444

The EAC can be compared against the emission benefits of the schemes, to look which is most cost-effective

The PV can be used to compare against the present value of (ecnomic) benefits to look at the net present value of the scheme

However, to assess cost-effectiveness and cost-benefit analysis fully, it is necessary to also consider the costs to operators. This would include, for example, the costs of fitting DPF to older vehicles, see retrofit example.

Cost-Effectiveness

Example on Retrofit technology

This is for a SCR using the costs from the IGCB economic analysis

Base year 2008

Scheme start 2008 Note in this example, the base year is the same as the start year, so the discount factor is 1 for year 0

Discount rate 3.50% Number of years 10

For fuel consumption

Annual mileage 50000 km per year Conversion (DfT)

Fuel efficiency 2.8 km per litre 7.8 miles per gallon source TSGB, table 3.4 1 kilometre = 0.6214 mile 1 Gallon = 4.546 litres

Cost fuel per litre (resource) 0.947 no tax included source TSGB, table 3.3

Change in efficiency -6%
Fuel cost 17148

http://www.dft.gov.uk/pgr/statistics/datatable spublications/tsgb/2007 edition/section 3 energy environment.pdf

2008

Equipment - bus	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	
SCR capital (resource)	430										
SCR additive	219	219	219	219	219	219	219	219	219	219	
SCR fuel penalty	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	
Total	1,678	1,248	1,248	1,248	1,248	1,248	1,248	1,248	1,248	1,248	
Discount factor	1.00000	0.96620	0.93350	0.90190	0.87140	0.84200	0.81350	0.78600	0.75940	0.73370	
Discounted cost	1,678	1,206	1,165	1,125	1,087	1,051	1,015	981	948	916	
Net present value	11,172										
Equivalent annualised cost	£1,343										

Annual emission benefits

Nox	emissions	emission per	cost
	g/km	year tonnes	per tonne
Euro IV	3.629	0.07259	
LEV	1.815	0.03629	
Difference	1.815	0.036	£37,011

£38,237

source NAEI Assume 20 000 km peryear in area This is for a EGR using the costs from the IGCB economic analysis

Base year2008Scheme start2008Discount rate3.50%Number of years6

For fuel consumption

Annual mileage 25000 1 kilometre = 0.6214 mile 1 Gallon = 4.546 litres Fuel efficiency 11 km per litre Diesel cars 39 miles per gallon, increase fc by 130% for LGVs source TSGB, table 3.4

Cost fuel per litre (resource) 0.947
Change in efficiency -2%
Fuel cost 2229

Equipment - bus	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	
SCR capital (resource)	288						
SCR maintenance	12	12	12	12	12	12	
SCR fuel	45	45	45	45	45	45	
Total	345	57	57	57	57	57	
Discount factor	1.00000	0.96620	0.93350	0.90190	0.87140	0.84200	
Discounted cost	345	55	53	51	49	48	
Present value	600						Ī
Equivalent annualised cost	£113						

Annual emission benefits

		Nox	emissions	emission per	cost
			g/km	year tonnes	per tonne
		Euro IV	0.425	0.00849	
		LEV	0.340	0.00679	
0.084925	20%	Difference	0.085	0.0017	£66,302
	reduction				
		Annual emission benefits			
		PM10	emissions	emission per	cost
			g/km	year tonnes	per tonne
		Euro IV	0.051	0.00102	
		LEV	0.005	0.00010	
0.045866	90%	Difference	0.046	0.001	£122,764

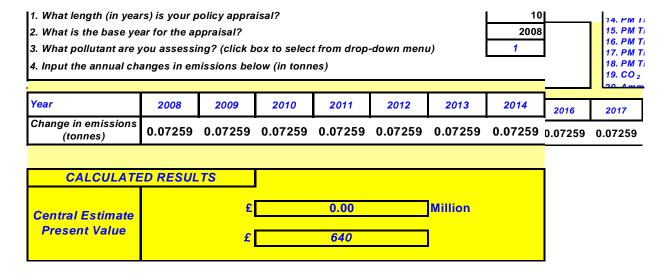
Cost-benefit analysis

The benefits for a LEV rigid vehicle based on a ten year lifetime

Additional benefits outside the zone double total benefits

LEV benefit

0.0726


This value is entered into the Defra damage cost calculator

http://www.defra.gov.uk/environment/airquality/panels/igcb/guidance/index.htm

To estimate benefits, it is necessary to select the pollutant, and specify the year that the scheme starts and the length of time

a ten year lifetime

a 2008 base year

The same approach is used for the EGR

Note for PM, it is necessary to enter the location of the emissions

The benefits are

Nox

0.084925

0.045866

0.045866

PM (central conurbation)

PM (outer conurbation)

For all 25000 annual mileage

Annual emission benefits

	Nox	emissions	emission per	
		g/km	year tonnes	
	Euro IV	0.425	0.01062	
	LEV	0.340	0.00849	
20%	Difference	0.085	0.0021	
reduction				
	Annual emission benefits			
	PM10	emissions	emission per	
		g/km	year tonnes	
	Euro IV	0.051	0.00102	
	LEV	0.005	0.00010	
90%	Difference	0.046	0.001	

central zone

	Annual emission benefits			
	PM10	emissions	emission per	
		g/km	year tonnes	
	Euro IV	0.051	0.00025	
	LEV	0.005	0.00003	
90%	Difference	0.046	0.000	

outer zone

Total present value benefits

724

Equipment - bus	PV Benefits	PV Costs	Net Present Value
EGR LGV	724	600	124
SCR rigid	640	11,172	-10532
	640	11,542	-10902

Note that in this case, the scheme should also take account of the changes in fuel consumption, and GHG emissions using the SPC values to provide estimates of the monetary benefits or costs of changes in CO2 emissions. This is particularly important for LEVs (though not included in this example)